A model for use in rsstap examples.

Format

Calling example("example_model") will run the model in the Examples section, below, and the resulting sstapreg object will then be available in the global environment. The chains and iter arguments are specified to make this example be small in size. In practice, it is reccomended that they be left unspecified in order to use the default values (4 and 2000 respectively) or increased if there are convergence problems. The cores argument is optional and on a multicore system, the user may well want to set that equal to the number of chains being executed.

See also

example_benvo for a description of the data.

Examples

example_model <- sstap_lm(BMI ~ sex + sap(FFR), benvo = rbenvo::example_benvo, # this next line is only to keep the example small in size! chains = 1, cores = 1, seed = 12345, iter = 500, refresh = 0)
#> Warning: The largest R-hat is 1.07, indicating chains have not mixed. #> Running the chains for more iterations may help. See #> http://mc-stan.org/misc/warnings.html#r-hat
#> Warning: Bulk Effective Samples Size (ESS) is too low, indicating posterior means and medians may be unreliable. #> Running the chains for more iterations may help. See #> http://mc-stan.org/misc/warnings.html#bulk-ess
#> Warning: Tail Effective Samples Size (ESS) is too low, indicating posterior variances and tail quantiles may be unreliable. #> Running the chains for more iterations may help. See #> http://mc-stan.org/misc/warnings.html#tail-ess
example_model
#> #> family: gaussian [identity] #> formula: BMI ~ sex + sap(FFR) #> observations: 1000 #> fixed effects: 12 #> ------ #> Median MAD #> (Intercept) 25.9 0.1 #> sex -2.1 0.1 #> s(FFR).1 2.9 0.7 #> s(FFR).2 2.9 0.1 #> s(FFR).3 3.1 0.1 #> s(FFR).4 2.9 0.1 #> s(FFR).5 2.7 0.1 #> s(FFR).6 1.4 0.1 #> s(FFR).7 0.1 0.1 #> s(FFR).8 0.0 0.1 #> s(FFR).9 -0.1 0.1 #> s(FFR).10 0.7 0.8 #> #> Smoothing terms: #> Median MAD_SD #> smooth_precision[s(FFR)1] 4.0 1.7 #> smooth_precision[s(FFR)2] 0.1 0.0