R/RcppExports.R
stappDP_fit.RdPenalized Functional Dirichlet Process Linear Regression with N observations
stappDP_fit( y, Z, X, S, w, alpha_a, alpha_b, sigma_a, sigma_b, tau_a, tau_b, K, num_penalties, iter_max, burn_in, thin, seed, num_posterior_samples, fix_alpha )
| y | a vector of continuous outcomes |
|---|---|
| Z | a matrix of population level confounders |
| X | a matrix of spatial temporal aggregated predictors |
| S | penalty matrix for stap parameters |
| w | a vector of weights for weighted regression |
| alpha_a | alpha gamma prior shape hyperparameter |
| alpha_b | alpha gamma prior scale hyperparameter |
| sigma_a | precision gamma prior shape hyperparameter |
| sigma_b | precision gamma prior scale hyperparameter |
| tau_a | penalty gamma prior shape hyperparameter |
| tau_b | penalty gamma prior scale hyperparameter |
| K | truncation number |
| num_penalties | number of penalty matrices accounted for in S |
| iter_max | maximum number of iterations |
| burn_in | number of burn in iterations |
| thin | number by which to thin samples |
| seed | rng initializer |
| num_posterior_samples | total number of posterior samples |
| fix_alpha | boolean value that determines whether or not to fix alpha in sampler |