R/RcppExports.R
stappDP_fit.Rd
Penalized Functional Dirichlet Process Linear Regression with N observations
stappDP_fit( y, Z, X, S, w, alpha_a, alpha_b, sigma_a, sigma_b, tau_a, tau_b, K, num_penalties, iter_max, burn_in, thin, seed, num_posterior_samples, fix_alpha )
y | a vector of continuous outcomes |
---|---|
Z | a matrix of population level confounders |
X | a matrix of spatial temporal aggregated predictors |
S | penalty matrix for stap parameters |
w | a vector of weights for weighted regression |
alpha_a | alpha gamma prior shape hyperparameter |
alpha_b | alpha gamma prior scale hyperparameter |
sigma_a | precision gamma prior shape hyperparameter |
sigma_b | precision gamma prior scale hyperparameter |
tau_a | penalty gamma prior shape hyperparameter |
tau_b | penalty gamma prior scale hyperparameter |
K | truncation number |
num_penalties | number of penalty matrices accounted for in S |
iter_max | maximum number of iterations |
burn_in | number of burn in iterations |
thin | number by which to thin samples |
seed | rng initializer |
num_posterior_samples | total number of posterior samples |
fix_alpha | boolean value that determines whether or not to fix alpha in sampler |